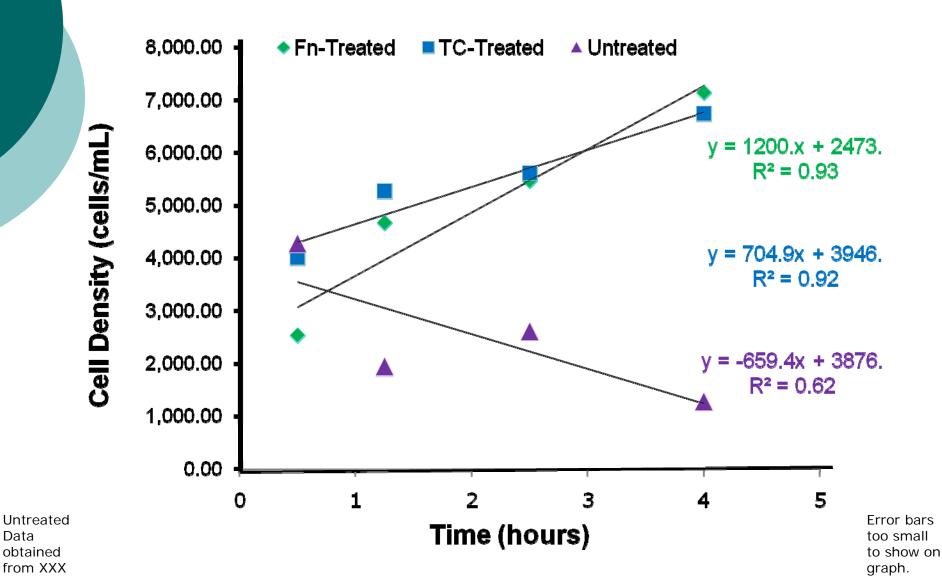
HDF Cells Survival and Activity In Vitro


Purpose

- Study attachment of HDF (Human Dermal Fibroblast) cells to different surfaces
 - Quantitative Cell Attachment Assay
- Determine the relationship between absorbance, cell concentration, and viability
 - MTT Viability Test
- Asses cell viability
 - Live/Dead Fluorescence Assay

Cell Attachment Assay Methods

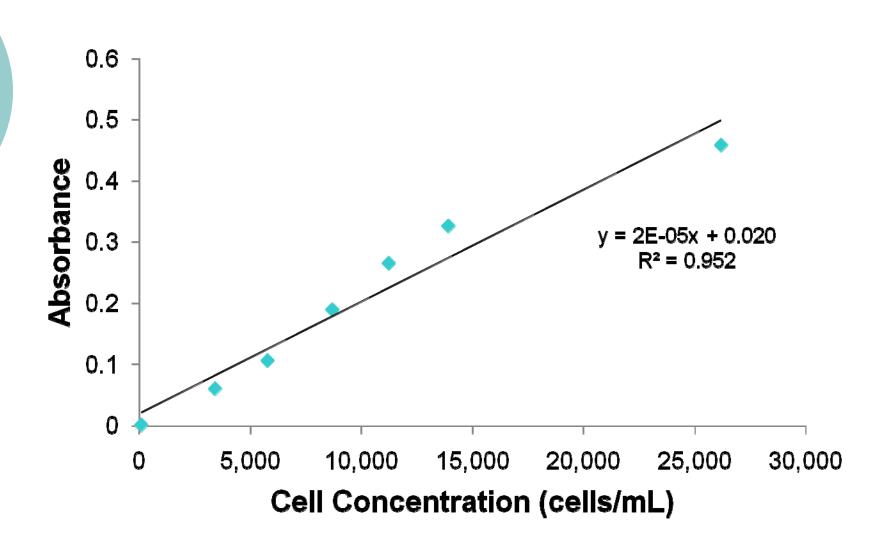
- Cells seeded at 10,000 cells/mL in DMEM with 10% serum
- Attachment to three surfaces studied:
 - TC -Treated Polystyrene
 - Untreated Polystyrene
 - Fibronectin (Fn)-Coated Polystyrene
- Cells rinsed with PBS to remove unattached cells
- Attached cells counted with Coulter Counter at:
 - 30 min
 - 1 hr and 15 min
 - 2 hrs and 30 min
 - 4 hrs

Cell Attachment Dependent on **Surface Treatment**

Data

Results of Cell Attachment

- Cells adhered to:
 - Fn coated surface
 - Contains ligands/proteins to promote adhesion
 - TC-treated plates
 - Charged surface, wettable
 - Untreated surface discouraged cell attachment
 - Of the three tested conditions Fn-coated had largest final cell density
 - After 4 hours, 50 % cell attachment seen on Fncoated surface


MTT Viability Test Methods

Cells seeded at 6 different densities:

Well	1 (Stock)	2	3	4	5	6	Control
Cell Concentration (cells/mL)		33,500	25,000	16,700	8,330	4,170	0

- Incubated in 10% serum in DMEM for 2 days
- Seeding densities confirmed with Coulter Counter
- Incubated with dye solution for 2 hours before solubilization/stop solution added
- Absorbance recorded at 570nm on Genesys
 10UV Spectrophotometer

Absorbance Increases With Higher Cell Concentrations

MTT Dye is a Good Indicator of Cell Health

- MTT indirectly measures:
 - Metabolic cell activity
 - Cell health
- Higher absorbance correlates to greater number of living cells.
 - The more viable the cells are, the more dye metabolized
- Shows overall health of cellular environment

Live/Dead Assay Methods

- Cells incubated for 2 days with 10% serum in DMEM
- Treatment Conditions:

Condition A	PBS and Dye
Condition B	Ethanol and Dye
Condition C	PBS, 2 drops of Ethanol and Dye

- Live cell membranes stained with calcein acetoxymethyl (calcein AM)-green stain
- Dead cell nuclei stained with Ethidium homodimer-1 (EthD-1)- red stain
- Nikon Fluorescent Microscope used to observe cells

Ethanol is Toxic to Cells

Test Conditions	Observations	Results
PBS	Cell Membrane stained green	100% of cells viable
Ethanol	Cell Nucli stained red	All Cells Dead
PBS and 2 drops Ethanol	Mostly green, 20% nuclei stained red	80% of cells viable

- Red stain indicates dead cells
- Green stain indicates living cells
- Ethanol is toxic, it dissolve lipids out of cell membrane.

MTT and Live/Dead Assays Both Measure Cell Viability

- Both rely on cells chemically changing indicator dye
- MTT indirectly measures cell viability
 - Measures absorbance of dye metabolized by healthy cells
- Live/Dead directly measures cell viability
 - Staining shows definitively if cells are dead or alive
- Unlike Coulter Counter both assays are discriminatory towards dead cells

Conclusions

- Cell attachment dependent on surface treatment
 - Cells adhered to Fn coated and TC-treated surfaces
 - Untreated surface discouraged cell attachment
- Absorbance related linearly to cell concentration
- Ethanol is detrimental to cells
- MTT and Live/Dead Assays are complimentary in determining cell viability